Menoufiya University
Faculty of Engineering Shebin El-Kom
Civil Engineering Department

Diploma Exam 16/01/2017
Open channel flow (CVE558)
Time allowed 3 hrs
Max. Degree : 100
Answer the following questions. Any missing data can be reasonably assumed. Illustrates you answer with neat sketches . answers should be organized, concise and readable.

Question (1)
 (20 MARKS)

A- Find the best hydraulic section for each of the following sections

- Trapezoidal

(5 marks)

- Triangular
(5 marks)
B- An earth channel is lined with concrete $(n=0.017)$, has side slopes 1:1.5 and is tangent to $a=3.0 \mathrm{ft}$ radius of the bottom, and is laid on a slope of 0.004 . Find the depth of uniform flow for discharge Of 250 c.f.s.
(10 marks)

Question (2)

(20 MARKS)
A- Show that the maximum velocity in a circular open channel of certain diameter. Also show th the maximum discharge occurs when the water depth is 0.95 the diameter
(8 marks)
B- For uniform laminar flow in wide open channels that
1- The velocity distribution at a vertical section is parabolic
(4 marks)
2- The average velocity: $\mathrm{V}=\frac{g \cdot S}{3 v} \cdot \mathrm{y}_{0}{ }^{2}$
(4 marks
3- The unit discharge : $\mathrm{q}=\frac{g \cdot s}{3 v} \cdot \mathrm{y}_{0}{ }^{3}$
(4 marks and then evaluate the values of the velocity coefficient α and the momentum coefficient β.

Question (3)

(20 MARKS)
A- If the velocity distribution for turbulent flow over rough open channel surfaces is represented by $u=5.75 u * \log \frac{30 y}{k}$
It is required to
1- Prove that $\mathrm{E}=\frac{14.2}{c}=0.883 \sqrt{f}=9.5 \frac{9.5 n}{R^{1 / 6}}$
(4 marks
2- Derive an expression for the mean velocity at a vertical section $\left(V_{m}\right)$ and give the he above the bed of which it occurs
(4 marks
3- Compare the expression you get in (b) with the mean of the velocities at 0.2 and 0.8 of th water depth (4 marks
4- Show that $\mathrm{E}=\frac{u_{\text {max }}}{V_{m}-1}$
(4 marks
B- Estimate the maximum shear stress on the both the sides and the bottom of a trapezoidal ope channel if: $b=4 y=5 \mathrm{~m}, \mathrm{n}=0.015, \mathrm{Z}=1.5, \mathrm{~S}_{0}=10 \mathrm{~cm} / \mathrm{km}, d_{\mathrm{so}}=2.50 \mathrm{~m}, \gamma_{\mathrm{s}}=2.65 \mathrm{t} / \mathrm{m}^{3}$ angle repose $\Theta=38^{\circ}$, show how to check the stability of the hydraulic section, calculate the shea velocity.
(4 marks
Question (4)
A- Show that the discharge of abroad crested weir may be expressed as
$Q=1.705 C_{d} \cdot b(E-h)^{1.5} \mathrm{~m}^{3} / \mathrm{sec}$ in which:
$E=$ specific energy just upstream weir and
$h=$ height of weir

B- A uniform flow of $20 \mathrm{~m}^{3} / \mathrm{sec}$ occurs in a rectangular channel of 5 m width and 2.5 m water depth the channel bed is gradually contracted to a width of 3 m , find :

1- The difference in water levels just before and at the constriction
2- The width of contraction to produce critical depth on it, and the drop in water levels (4 marks)
3- Draw a relationship between y_{1}, y_{2} versus b_{2}
4- The dirrerence in water levels if the width is contracted to 2 m

Question (4)

A- Derive the G.V.F. equation in terms of each of the following parameters
1- The section factor (z)
2- The conueyance factor (k)

B- A discharge of $250 \mathrm{~m}^{3} / \mathrm{sec}$. flows over the spillway of a dam and then flows over a level R.C floor of width 50 m . The velocity of water at the bottom of the spillway is $14.0 \mathrm{~m} / \mathrm{sec}$ and the water depth below the apron is 3.0 m . Estimate :
1- How long should the apron be built ?
2- The energy lost from the foot of the spillway to the downstream side of the jump (take $\mathrm{n}=0.016$)
(2 marks)

This exam measures the following ILOs										
Question Number	Q2 -A		Q1-B	Q2-B	Q3-A	Q1-A	Q3-B	Q4- A	Q5-A	Q5-B
	a 2		b 5	b 6	b 12	C 9	C 11	C 4	C1	C6
Skills	Knowledge \& Understanding Skills		Intellectual Skills			Professional Skills				

